
Audit
Juiced

Presented by:

OtterSec contact@osec.io

Harrison Green hgarrereyn@osec.io

WilliamWang defund@osec.io

mailto:contact@osec.io
mailto:hgarrereyn@osec.io
mailto:defund@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4
Proofs of Concept . 4

04 Vulnerabilities 6
OS-JUI-ADV-00 [crit] [Resolved] | Insufficiently constrained token vaults 7
OS-JUI-ADV-01 [crit] [Resolved] | Insufficiently constrained RootBank accounts 9
OS-JUI-ADV-02 [crit] [Resolved] | Mango-exclusive instructions accept Mercurial strategies . . . 11

05 General Findings 13
OS-JUI-SUG-00 | Admin-gated functionality . 14
OS-JUI-SUG-01 | Limited withdraw capabilities . 15
OS-JUI-SUG-02 | Anchor constraints . 16
OS-JUI-SUG-03 | Use consistent naming . 17

Appendices

A Program Files 18

B Proofs of Concept 19

C Procedure 20

D Implementation Security Checklist 21

E Vulnerability Rating Scale 23

© 2022 OtterSec LLC. All Rights Reserved. 1 / 23

01 | Executive Summary

Overview

Juiced engaged OtterSec to perform an assessment of the juiced program.

This assessment was conducted between July 15th and July 29th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation.

We delivered final confirmation of the patches July 29th, 2022.

Key Findings

The following is a summary of the major findings in this audit.

• 7 findings total
• 3 vulnerabilities which could lead to loss of funds

– OS-JUI-ADV-00: Resolved
– OS-JUI-ADV-01: Resolved
– OS-JUI-ADV-02: Resolved

As part of this audit, we also provided proofs of concept for each vulnerability to prove exploitability and
enable simple regression testing. These scripts can be found at osec.io/pocs/juiced. For a full list, see
Appendix B.

© 2022 OtterSec LLC. All Rights Reserved. 2 / 23

https://osec.io/pocs/juiced

02 | Scope
The source code was delivered to us in a git repository at github.com/juiced-fi/juiced-protocol. This audit
was performed against commit f7c035f.

There was 1 program included in this audit. A brief description for each program is given below. A full list
of program files and hashes can be found in Appendix A.

Name Description

juiced Staking pool with a variety of strategies on Mango and Mercurial.

© 2022 OtterSec LLC. All Rights Reserved. 3 / 23

https://github.com/juiced-fi/juiced-protocol

03 | Findings
Overall, we report 7 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 3
High 0

Medium 0
Low 0

Informational 4

Proofs of Concept

For each vulnerability we created a proof of concept to enable easy regression testing. We recommend
integrating these as part of a comprehensive test suite. The proof of concept directory structure can be
found in Appendix B.

A GitHub repository containing these proof of concepts can be found at osec.io/pocs/juiced.

To run a POC:

SH

./run.sh <directory name>

© 2022 OtterSec LLC. All Rights Reserved. 4 / 23

https://osec.io/pocs/juiced

Juiced Audit 03 | Findings

For example,

SH

./run.sh os-jui-adv-00

Each proof of concept comes with its own patch file which modifies the existing test framework to demon-
strate the relevant vulnerability. We also recommend integrating these patches into the test suite to
prevent regressions.

© 2022 OtterSec LLC. All Rights Reserved. 5 / 23

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix E.

ID Severity Status Description

OS-JUI-ADV-00 Critical Resolved The USDC sweeper vault is not necessarily used during de-
posit and withdrawal.

OS-JUI-ADV-01 Critical Resolved The USDC and BTC/SOL RootBank accounts are not necessar-
ily used during deposit and withdrawal.

OS-JUI-ADV-02 Critical Resolved Mango-exclusive instructions incorrectly calculate notional
value when invoked with Mercurial strategies.

© 2022 OtterSec LLC. All Rights Reserved. 6 / 23

Juiced Audit 04 | Vulnerabilities

OS-JUI-ADV-00 [crit] [Resolved] | Insufficiently constrained token vaults

In addition to Mango/Mercury accounts, every Juiced carton stores unused USDC in a sweeper vault. This
is also where users deposit and withdraw funds in exchange for pool tokens, which represent a fractional
share of the carton’s notional value.

On deposit, the protocol mints pool tokens to the depositor such that the ratio between pool tokens and
notional value remains constant. Naturally, withdrawal requires burning pool tokens; the protocol then
transfers USDC in order to maintain the ratio.

The issue is that the deposit and withdraw instructions do not properly validate the vault account
that is passed into their contexts. Any USDC token account owned by the program’s authority PDA will
be accepted, even though vault should always be the carton’s sweeper account.

instructions/mango/deposit.rs RUST

#[account(
mut,
constraint = (vault.mint == owner_usdc_account.mint && vault.owner ==

authority.key())↪→

)]
pub vault: Box<Account<'info, TokenAccount>>,

By providing a different account, an attacker can misrepresent the notional value of the sweeper vault —
and hence the overall carton — during deposit and withdrawal. This can easily be leveraged into loss of
funds.

utils.rs RUST

fn calculate_sweeper_notional(
mango_group: &MangoGroup,
sweeper_account: &TokenAccount,

) -> Option<I80F48> {
let sweeper_holdings = sweeper_account.amount;
let decimals = mango_group.tokens[QUOTE_INDEX].decimals;
bits_to_token(sweeper_holdings, decimals)

}

An identical bug is present in the deposit_mercurial and withdraw_mercurial instructions,
where the sweeper vault is named juiced_usdc_vault.

Proof of Concept

Suppose a Juiced carton has 10,000 USDC in the sweeper vault and 10,000 minted pool tokens. Consider
the following attack:

© 2022 OtterSec LLC. All Rights Reserved. 7 / 23

Juiced Audit 04 | Vulnerabilities

1. The attacker creates a token account holding 0.01 USDC. This will function as the fake sweeper vault.

2. The attacker invokesdepositwith the fake vault, and transfers 100 USDC. The protocolmistakenly
calculates the notional value to be 0.01 USDC. This corresponds with 10,000 pool tokens, so it mints
100,000,000 pool tokens to the attacker.

3. The attacker invokes withdraw with the real vault, and burns 100,000,000 pool tokens. The
protocol calculates the notional value to be 10,000 USDC. This corresponds with 100,010,000 pool
tokens, so it transfers≈ 9,999 USDC to the attacker.

The attacker’s net profit is≈ 9,899 USDC.

Remediation

In the DepositWithdraw and DepositWithdrawMercurial contexts, verify that the provided
sweeper vault address matches juiced.usdc_vault_key.

instructions/mango/deposit.rs DIFF

@@ -45,7 +45,7 @@ pub struct DepositWithdraw<'info> {

#[account(
mut,

- constraint = (vault.mint == owner_usdc_account.mint && vault.owner ==
authority.key())↪→

+ address = juiced.usdc_vault_key,
)]
pub vault: Box<Account<'info, TokenAccount>>,

Patch

Fixed in #572.

© 2022 OtterSec LLC. All Rights Reserved. 8 / 23

https://github.com/juiced-fi/juiced-protocol/pull/572

Juiced Audit 04 | Vulnerabilities

OS-JUI-ADV-01 [crit] [Resolved] | Insufficiently constrainedRootBankaccounts
In Mango, each asset has an associated RootBank which holds the interest rate parameters for depositors
and borrowers. The compounded interest rates are stored in thedeposit_index andborrow_index
fields, which Juiced uses to calculate the notional value of a Mango account.

utils.rs RUST

let usdc_deposit_index = usdc_root_bank.deposit_index.checked_div(bits_mult)?;
let usdc_borrow_index = usdc_root_bank.borrow_index.checked_div(bits_mult)?;
let token_deposit_index = token_root_bank.deposit_index.checked_div(bits_mult)?;
let token_borrow_index = token_root_bank.borrow_index.checked_div(bits_mult)?;

let token_deposits =
mango_account.deposits[symbol_index].checked_mul(token_deposit_index)?;↪→

let token_borrows =
mango_account.borrows[symbol_index].checked_mul(token_borrow_index)?;↪→

let total_token = token_deposits.checked_sub(token_borrows)?;
msg!("mango token total: {:?}", total_token.to_string());

let usdc_deposits =
mango_account.deposits[QUOTE_INDEX].checked_mul(usdc_deposit_index)?;↪→

let usdc_borrows =
mango_account.borrows[QUOTE_INDEX].checked_mul(usdc_borrow_index)?;↪→

let total_usdc = usdc_deposits.checked_sub(usdc_borrows)?;
msg!("mango total usdc: {:?}", total_usdc.to_string());

The issue is that the deposit and withdraw instructions do not properly validate the
usdc_root_bank and token_root_bank accounts that are passed into their contexts. Although
the load_mango_data function requires them to be proper RootBank accounts owned by the Mango
program, their corresponding assets are not verified to be USDC and BTC/SOL.

instructions/mango/deposit.rs RUST

/// CHECK: mango usdc root bank
pub usdc_root_bank: UncheckedAccount<'info>,

/// CHECK: mango token root bank
pub token_root_bank: UncheckedAccount<'info>,

By providing an unexpected RootBank, an attacker can misrepresent the notional value of the Mango
account — and hence the overall carton — during deposit and withdrawal. This can easily be leveraged
into loss of funds, especially if one initializes a RootBank with extreme interest rates. Note that this bug
also impacts the deposit_mercurial and withdraw_mercurial instructions.

© 2022 OtterSec LLC. All Rights Reserved. 9 / 23

Juiced Audit 04 | Vulnerabilities

Proof of Concept

Suppose a Juiced carton has 5,000 USDC in the sweeper vault, 5,000 USDC in the Mango account, and
10,000 minted pool tokens. Consider the following attack:

1. The attacker invokes depositwith the wBTC RootBank instead of the USDC RootBank, and trans-
fers 10,000 USDC. The protocol mistakenly calculates the notional value to be≈ 9,841 USDC. This
corresponds with 10,000 pool tokens, so it mints≈ 10,161 pool tokens to the attacker.

2. The attacker invokes withdrawwith the correct USDC RootBank, and burns≈ 10,161 pool tokens.
The protocol calculates the notional value to be≈ 20,000 USDC. This corresponds with 20,161 pool
tokens, so it transfers≈ 10,080 USDC to the attacker.

The attacker’s net profit is≈ 80 USDC.

Remediation

Verify that usdc_root_bank is the USDC root bank and token_root_bank is the BTC or SOL root
bank (depending on the Juiced strategy). One option is to store the expected addresses in the Juiced
account data. Another option is to retrieve them from the mango_group account, which is already
verified properly.

Patch

Fixed in #576.

© 2022 OtterSec LLC. All Rights Reserved. 10 / 23

https://github.com/juiced-fi/juiced-protocol/pull/576

Juiced Audit 04 | Vulnerabilities

OS-JUI-ADV-02 [crit] [Resolved] |Mango-exclusive instructionsacceptMercurial
strategies

There are two categories of Juiced strategies: Mango-exclusive (stores assets in sweeper vault and Mango
account) and Mercurial (additionally stores assets in Mercurial account). When staking funds in Mercu-
rial strategies, users are supposed to invoke the deposit_mercurial and withdraw_mercurial
instructions. This is because they must include Mercurial assets when calculating the Juiced carton’s
notional value.

utils.rs RUST

let sweeper_and_mango = calculate_juiced_notional(
juiced,
mango_account,
mango_group,
mango_cache,
usdc_root_bank,
token_root_bank,
sweeper_account,
is_withdrawal,

)?;
msg!("sweeper_and_mango: {}", sweeper_and_mango.to_string());
let mercurial_amount = calculate_mercurial_notional(

lp_token_account,
mercurial_lp_mint,
mercurial_vault,
is_withdrawal,

)?;
msg!("mercurial_amount: {}", mercurial_amount.to_string());
mercurial_amount.checked_add(sweeper_and_mango)

The issue is that the deposit and withdraw instructions, which expect Mango-exclusive strategies,
may be invoked with Mercurial strategies. The program assumes the Mercurial account does not exist,
and hence underestimates the carton’s notional value. Similar to OS-JUI-ADV-00 and OS-JUI-ADV-01, this
introduces an arbitrage opportunity which can be leveraged into loss of funds.

Proof of Concept

Suppose a Juiced carton has 5,000 USDC in the sweeper vault,≈ 4,995 USDC in the Mercurial account,
and 10,000 minted pool tokens. Consider the following attack:

1. The attacker invokes deposit and transfers 10,000 USDC. The protocol mistakenly calculates the
notional value to be 5,000 USDC. This corresponds with 10,000 pool tokens, so it mints 20,000 pool
tokens to the attacker.

© 2022 OtterSec LLC. All Rights Reserved. 11 / 23

Juiced Audit 04 | Vulnerabilities

2. The attacker invokes withdraw_mercurial and burns 20,000 pool tokens. The protocol calcu-
lates the notional value to be 19,995 USDC. This corresponds with 30,000 pool tokens, so it transfers
≈ 13,330 USDC to the attacker.

The attacker’s net profit is≈ 3,330 USDC.

Remediation

In the deposit and withdraw instructions, explicitly require the strategy to be BtcMangoFunding
or SolMangoFunding. In the deposit_mercurial and withdraw_mercurial instructions, ex-
plicitly require the strategy to be BtcMangoMercurial or SolMangoMercurial.

Patch

Fixed in #579.

© 2022 OtterSec LLC. All Rights Reserved. 12 / 23

https://github.com/juiced-fi/juiced-protocol/pull/579

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Description

OS-JUI-SUG-00 Enforce stricter verification on admin-gated functionality.

OS-JUI-SUG-01 Maintain liquidity in the sweeper vault.

OS-JUI-SUG-02 Use more specialized Anchor constraints whenever possible.

OS-JUI-SUG-03 Use consistent naming across accounts and contexts.

© 2022 OtterSec LLC. All Rights Reserved. 13 / 23

Juiced Audit 05 | General Findings

OS-JUI-SUG-00 | Admin-gated functionality

Description

Although the initialize instruction is intended for the Juiced backend, it does not compare the
provided backend signer against a fixed public key. If the backend does not initialize all strategies
immediately after deployment, an attacker can take control of one.

Many admin-gated instructions also fail to perform sufficient account checks. If the backend makes a
mistake, this could lead to invalid state.

Remediation

In the initialize instruction, verify that the backend account matches a fixed public key. To simplify
testing, this constraint should only apply onmainnet.

Consider incorporating the following (non-comprehensive) list of account checks:

• In the Initialize context, usdc_token and mango_program should be fixed constants on
mainnet.

• In the InitializeMercurial context, usdc_token and mercurial_program should be
fixed constants onmainnet. Also, mercurial_lp_token should be equal to
mercurial_vault.lp_mint.

• In the MoveFromMango and MoveToMango contexts, vault should be equal to
juiced.usdc_vault_key.

• In the SettleSpotFunds context, juiced_usdc_vault should be equal to
juiced.usdc_vault_key.

• In the MoveToFromMercurial context, juiced_usdc_vault should be equal to
juiced.usdc_vault_key.

© 2022 OtterSec LLC. All Rights Reserved. 14 / 23

Juiced Audit 05 | General Findings

OS-JUI-SUG-01 | Limited withdraw capabilities

Description

In order to generate yield, the Juiced protocol deposits funds into Mango and Mercurial. However, this
means that users can only withdraw up to the amount currently held in the sweeper vault. During periods
of large withdrawal, the carton may not be able to service every request.

Remediation

If the sweeper vault’s balance dips below a certain threshold, the Juiced backend shouldmove back assets
fromMango and Mercurial. Alternatively, one couldmodify the on-chain program to automatically CPI
into these programs, if necessary during withdrawal.

© 2022 OtterSec LLC. All Rights Reserved. 15 / 23

Juiced Audit 05 | General Findings

OS-JUI-SUG-02 | Anchor constraints

Description

The Juiced program often uses constraint, which is generic, when a specialized Anchor constraint is
available. For example, the has_one and address constraints are more suitable for validating account
addresses.

instructions/mango/deposit.rs DIFF

@@ -64,7 +64,7 @@ pub struct DepositWithdraw<'info> {

#[account(
mut,

- constraint = (juiced.pool_token == pool_mint.key())
+ address = juiced.pool_token,

)]
pub pool_mint: Box<Account<'info, Mint>>,

}

Similarly, SPL Token constraints are more suitable for validating SPL Token accounts.

instructions/mango/deposit.rs DIFF

@@ -51,7 +51,8 @@ pub struct DepositWithdraw<'info> {

#[account(
mut,

- constraint = (owner_usdc_account.mint == vault.mint &&
owner_usdc_account.owner == owner.key())↪→

+ token::mint = vault.mint,
+ token::authority = owner,

)]
pub owner_usdc_account: Box<Account<'info, TokenAccount>>,
pub token_program: Program<'info, Token>,

Remediation

• Use the has_one or address constraints to match public keys.

• Use the token::mint and token::authority constraints to validate a token account.

© 2022 OtterSec LLC. All Rights Reserved. 16 / 23

Juiced Audit 05 | General Findings

OS-JUI-SUG-03 | Use consistent naming

Description

Accounts are often inconsistently named across context and struct definitions, which produces less
readable code. For example, the JuicedState struct has a field named usdc_vault_key, which
holds the sweeper vault’s public key. In the DepositWithdraw context, it is named vault. In the
DepositWithdrawMercurial context, it is named juiced_usdc_vault.

Remediation

Whenever possible, refer to an account by the same name across contexts and structs.

© 2022 OtterSec LLC. All Rights Reserved. 17 / 23

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

Cargo.toml d81fd0f1c7de601741c5d662719f1df6d370492651fed2cfcdf66b28e6fa045c
Xargo.toml 815f2dfb6197712a703a8e1f75b03c6991721e9eb7c40dfaec8b0b49da4aa629
build-me.txt 9fa8637ca8ab48d2f6a3f3d43bbd6941b6a02786b50e6e87ac267039821f7b31
src
errors.rs 8bf60aa33b6176b33bcb0295fcffe7e767326d35ca43439ca9a10665cc4c12ad
lib.rs ec0ff64c0921cd0eabfd69ac47c1100e689d18754fc893db7ce33a935b4f820b
utils.rs 98e311f020e3e7ab98bb6bee7cb5b06772c927a5cf627832b1d7d691b86bf337
instructions

mod.rs 5cd3ce2cd1767e2bc224fcffde5ac0e3615bc83540a842657eb9edd577c51c5c
mango
cancel_all_perp_orders.rs f1b85d8430051608b9d82b66789db644c3e20547fea8443ce9927627dfa37aa0
cancel_all_spot_orders.rs 310ceaf67dbb6b66a08d650b15885f274ac4b53006b3ae725782d2a897038737
cancel_perp_order.rs 2f9f38e1873c88ecce24eb5a736528432431e720835d34d6690ef7b84027398a
cancel_spot_order.rs dfe4e801e7f1bf8b4cbbf63f975976079cf112d193c1259980d72003baefadbb
create_spot_open_orders.rs fae892a19543ddaab767bc0158dd00f7435605e18eec4fe96f180b3763016e04
deposit.rs 6189e8ec4f5d7c64724706e1c894541e11599a1172ea463807294163cb6c6b77
init.rs 02e5b77d0d158db9c7252c277a2888b690a27725a218b1208934ae5b665b04ae
mod.rs b575319a2cec245d612214d83dde90da1cd735e199795767da918621c313186f
move_from_mango.rs 730f5e86c8f39b762282b4fc32c2c5fcf32e2a544413091ecec15985a648a455
move_to_mango.rs b96bb315165a71a038e6992441dc2e5f35c9c2717ed89beb7ff54b04dfc108d2
settle_spot_funds.rs 2049d69aa2a8d4f41a2dd11bccec9ec4a447074dca5b1f19616d014f497679cd
trade_perp.rs 3d025a66e2a11e9aeb41f0b7a0596e1e14c44ee31ae8cf3218670dee8782078a
trade_spot.rs b538864167e6ccbbac7eed8d42e2914339f879ec78e7734b47c9814b75644717
withdraw.rs 7f25d9464f63df2a7415715b33a11fc9ece864bca61823e6a9c4ae1bc81a83d8

mercurial
deposit.rs b4430d71396afff418aff2bd12d39bb0ffa38b37c3c9b83aaf621929d85e6fc1
init_mercurial.rs c821e9b66cd73d9c8fe63d77142d789db627c809c36b2a148905948fec9da0de
mod.rs 4ee31e32343bc32cbb2f6b050703df6954871afc1b30a3a4490988b6bd653769
move_from_mercurial.rs 3b96ac53da035d7d3f23e7f9a4bcbb7008ed984c72f647f9e2abffc51db3bd93
move_to_mercurial.rs 49dd5cd3277daac8dd612da94bf8f2a77908b6fd388cfa1f49ac895a30cc12e3
withdraw.rs 1e3e301aa5911f8ed99c2bb251326062bb89e2227d760ee27aa89783b7d6885b

structs
juiced.rs 2d914f4d711c9a2e24e47e2b491b85575da48373379d8e5a7266f37b639ddd85
mango.rs 7ea7bd42adc98c60bcf1b2603b7d39ffc6cc457685933fc4c9df37a6b9a8e1d9
mercurial.rs 342e403dcf9b09406b9fb724ca2153bfc964274cc84f4fbcad46b02a7b05fb39
mod.rs da0b53fb6ad156ee43f79a9a83e35bf16ed717141c11b7f13be0d46515b0640e

© 2022 OtterSec LLC. All Rights Reserved. 18 / 23

B | Proofs of Concept
Below are the provided proof of concept files and their corresponding SHA256 hashes.

Dockerfile c58e7b1a89addf088e70cf4b1abb7ffcc708600ce08f859e7069db03b2efdc98
README.md de95a89ba81cb1397699415362b701cf52768f37df53f752be427abc5886c4cd
run.sh e1bb4cc229f6f40481997c25cc38bf23486615b612479303036ef9dbf634dee5
pocs
Cargo.toml 5948dca867fc75d34fdcf7286e1dce02eb4ad30f7c19a7f0ae7419d0a1de7c4a
mango_cache.dat db9865b4d7f77712b8844d438cba2365e34010644f8bcaeb2d1d5fa4b76d2e57
mango_group.dat f1c67c1560739d02592e532481266465cf9ceca11978945bc56205f8d2585c52
mango_node_usdc.dat a836037874fc6d6add01d144a20b34517b3149df24a54a88de4a956f58321d5d
mango_root_usdc.dat 9b215324b36eb4a9e3f545cc8a8dd61208f840de94a5d32e4fe5e0dadae7e443
mango_root_wbtc.dat 76d3e629170d140208c7ce9caebf33a82e1950715eb6873c697f887b16bd8356
mango_vault_usdc.dat ae06d3b5ef3d779eb96512ca6d37fd5469cca2cc37ce09a62d4b1b182d9a2ac7
mercurial_lp_mint.dat 57666d5acd36acb24364a9f801adc2b81032ca06c1adf4358d34e7235dc5c307
mercurial_usdc_vault.dat c2d9cdcdac0171c78a6e3ae59c8dd890970e3ca74f3604a0c8917a34004c78fd
mercurial_vault.dat ab1ff3a2c45da53123cc929b1d3deb93af465b20c7cbc13f36cfa3d336801f1a
usdc_mint.dat 5ac48b8a37ddb9a5b8cf1ab6876755475266358879094caa6ec0efabba63a438
prog

juiced_mainnet.so b70d2db9cea946c51e144c3828ab0a0999aa56a3ba4c207703bca25d20c4116d
mango_mainnet.so dbb567daab96e04961bbbe372098f95a72199346260596d74b79c6b687029d59
mercurial_mainnet.so 378903d85e4d62a4fc0faeb654ac9646c280d8c63a95be5d0b3affa2599d226b

src
adv_00.rs e82ee7b5058cc9f4062622c1a7696ef8c3dd78e44f78c60efe5baeed63489423
adv_01.rs f5c0fec52435febf71ba50b1fa81039527ade699628dd31c1ee26992eaf57df8
adv_02.rs 49cdae2cbcdcb57b228934334cc96ebd469fd553d342fc1288ef563920a6eb11
lib.rs 37f9e46c18405f3016b28fb6d12a1fee831c294075a166f738f77c6ba075def9

© 2022 OtterSec LLC. All Rights Reserved. 19 / 23

C | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle which could bemanipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix D.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 20 / 23

D | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 21 / 23

Juiced Audit D | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 22 / 23

E | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 23 / 23

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Proofs of Concept

	Vulnerabilities
	OS-JUI-ADV-00 [crit] [Resolved] | Insufficiently constrained token vaults
	OS-JUI-ADV-01 [crit] [Resolved] | Insufficiently constrained RootBank accounts
	OS-JUI-ADV-02 [crit] [Resolved] | Mango-exclusive instructions accept Mercurial strategies

	General Findings
	OS-JUI-SUG-00 | Admin-gated functionality
	OS-JUI-SUG-01 | Limited withdraw capabilities
	OS-JUI-SUG-02 | Anchor constraints
	OS-JUI-SUG-03 | Use consistent naming

	Appendices
	Program Files
	Proofs of Concept
	Procedure
	Implementation Security Checklist
	Vulnerability Rating Scale

